Skip to main content

Calculadora Centrada Del Promedio Móvil


David, Sí, MapReduce está diseñado para operar en una gran cantidad de datos. Y la idea es que en general, el mapa y las funciones de reducción no deberían cuidar cuántos mapeadores o cuántos reductores hay, esa es sólo la optimización. Si piensas cuidadosamente sobre el algoritmo que publiqué, puedes ver que no importa qué asignador obtiene qué partes de los datos. Cada registro de entrada estará disponible para cada operación de reducción que lo necesite. Ndash Joe K Sep 18 12 at 22:30 En el mejor de mi entendimiento el promedio móvil no está bien mapas al paradigma de MapReduce ya que su cálculo es esencialmente la ventana deslizante sobre datos ordenados, mientras que MR es el procesamiento de los rangos no intersectados de los datos ordenados. Solución que veo es como sigue: a) Para implementar particionador personalizado para poder hacer dos particiones diferentes en dos ejecuciones. En cada ejecución, los reductores obtendrán diferentes rangos de datos y calcularán el promedio móvil cuando sea apropiado. Voy a tratar de ilustrarlo: En la primera ejecución, los datos de los reductores deberían ser: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Aquí usted cacluate el promedio móvil para algunos Qs. En la próxima ejecución, los reductores deberían obtener datos como: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 Y caclular el resto de promedios móviles. A continuación, tendrá que agregar los resultados. Idea de particionista personalizado que tendrá dos modos de funcionamiento - cada vez que se divide en rangos iguales, pero con algún cambio. En un pseudocódigo se verá así. Partición (keySHIFT) / (MAXKEY / numOfPartitions) donde: SHIFT se tomará de la configuración. MAXKEY valor máximo de la clave. Supongo que por simplicidad empiezan con cero. RecordReader, IMHO no es una solución ya que se limita a la división específica y no se puede deslizar sobre el límite de divisiones. Otra solución sería implementar la lógica personalizada de dividir datos de entrada (es parte del InputFormat). Se puede hacer para hacer 2 diapositivas diferentes, similar a la partición. Responder Sep 17 12 at 8: 59Moving averages Promedio a las medias Con conjuntos de datos convencionales, el valor medio es a menudo el primero, y uno de los más útiles, las estadísticas de resumen para calcular. Cuando los datos están en forma de series temporales, la media de la serie es una medida útil, pero no refleja la naturaleza dinámica de los datos. Los valores medios calculados en periodos de cortocircuito, ya sea antes del período actual o centrados en el período actual, suelen ser más útiles. Debido a que tales valores medios variarán, o se moverán, a medida que el período actual se desplaza desde el tiempo t2, t3, etc., se conocen como medias móviles (Mas). Un promedio móvil simple es (típicamente) el promedio no ponderado de k valores previos. Una media móvil exponencialmente ponderada es esencialmente la misma que una media móvil simple, pero con contribuciones a la media ponderada por su proximidad al tiempo actual. Debido a que no hay una, sino toda una serie de promedios móviles para cualquier serie dada, el conjunto de Mas puede ser trazado en gráficos, analizado como una serie, y utilizado en el modelado y la predicción. Una gama de modelos puede ser construida usando medias móviles, y éstos se conocen como modelos del MA. Si estos modelos se combinan con modelos autorregresivos (AR), los modelos compuestos resultantes se conocen como modelos ARMA o ARIMA (el I es para integrado). Promedios móviles simples Puesto que una serie temporal puede considerarse como un conjunto de valores, t 1,2,3,4, n se puede calcular el promedio de estos valores. Si asumimos que n es bastante grande, y seleccionamos un entero k que es mucho menor que n. Podemos calcular un conjunto de promedios de bloques, o medias móviles simples (de orden k): Cada medida representa el promedio de los valores de datos sobre un intervalo de k observaciones. Obsérvese que la primera MA posible de orden k gt0 es que para t k. De forma más general, podemos eliminar el subíndice extra en las expresiones anteriores y escribir: Esto indica que la media estimada en el tiempo t es el promedio simple del valor observado en el tiempo t y los pasos de tiempo anteriores k -1. Si se aplican pesos que disminuyen la contribución de las observaciones que están más lejos en el tiempo, se dice que el promedio móvil se alisa exponencialmente. Los promedios móviles se usan a menudo como una forma de pronóstico, por lo que el valor estimado para una serie en el tiempo t 1, S t1. Se toma como la MA para el período hasta e incluyendo el tiempo t. p. ej. La estimación de hoy se basa en un promedio de valores anteriores registrados hasta e incluyendo ayer (para datos diarios). Los promedios móviles simples pueden ser vistos como una forma de suavizado. En el ejemplo ilustrado a continuación, el conjunto de datos sobre contaminación atmosférica que se muestra en la introducción a este tema se ha aumentado con una línea de 7 días de media móvil (MA), que se muestra aquí en rojo. Como se puede ver, la línea de MA suaviza los picos y valles en los datos y puede ser muy útil para identificar las tendencias. La fórmula estándar de cálculo de forward significa que los primeros k -1 puntos de datos no tienen ningún valor MA, pero a partir de entonces los cálculos se extienden hasta el punto final de datos de la serie. Una razón para calcular promedios móviles simples de la manera descrita es que permite calcular los valores para todos los intervalos de tiempo desde el tiempo tk hasta el presente, y A medida que se obtiene una nueva medida para el tiempo t1, se puede añadir el MA del tiempo t1 al conjunto ya calculado. Esto proporciona un procedimiento sencillo para conjuntos de datos dinámicos. Sin embargo, hay algunos problemas con este enfoque. Es razonable argumentar que el valor medio en los últimos 3 períodos, digamos, debería estar situado en el tiempo t -1, no en el tiempo t. Y para una MA sobre un número par de períodos tal vez debería estar situado en el punto medio entre dos intervalos de tiempo. Una solución a este problema es usar cálculos de MA centrados, en los que la MA en el tiempo t es la media de un conjunto simétrico de valores alrededor de t. A pesar de sus obvios méritos, este enfoque no se utiliza generalmente porque requiere que los datos estén disponibles para eventos futuros, lo que puede no ser el caso. En casos donde el análisis es enteramente de una serie existente, el uso de Mas centrado puede ser preferible. Los promedios móviles simples pueden considerarse como una forma de suavizado, eliminando algunos componentes de alta frecuencia de una serie temporal y destacando (pero no eliminando) las tendencias de manera similar a la noción general de filtrado digital. De hecho, las medias móviles son una forma de filtro lineal. Es posible aplicar un cálculo del promedio móvil a una serie que ya ha sido suavizada, es decir, suavizar o filtrar una serie ya suavizada. Por ejemplo, con un promedio móvil de orden 2, podemos considerar que se calcula usando pesos, por lo que la MA en x 2 0,5 x 1 0,5 x 2. Igualmente, la MA en x 3 0,5 x 2 0,5 x 3. Si Aplicar un segundo nivel de suavizado o filtrado, tenemos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 es decir, el filtro de 2 etapas Proceso (o convolución) ha producido una media móvil simétrica ponderada variablemente, con pesos. Las convoluciones múltiples pueden producir promedios móviles ponderados bastante complejos, algunos de los cuales se han encontrado de uso particular en campos especializados, como en los cálculos del seguro de vida. Medias móviles se pueden utilizar para eliminar los efectos periódicos si se calcula con la longitud de la periodicidad como un conocido. Por ejemplo, con datos mensuales, las variaciones estacionales pueden ser eliminadas (si este es el objetivo) aplicando una media móvil simétrica de 12 meses con todos los meses ponderados igualmente, excepto el primero y el último que se ponderan en 1/2. Esto es porque habrá 13 meses en el modelo simétrico (tiempo actual, t. / - 6 meses). El total se divide por 12. Se pueden adoptar procedimientos similares para cualquier periodicidad bien definida. Promedios móviles ponderados exponencialmente (EWMA) Con la fórmula del promedio móvil simple: todas las observaciones son igualmente ponderadas. Si llamamos a estos pesos iguales, alfa t. Cada uno de los k pesos sería igual a 1 / k. Por lo que la suma de los pesos sería 1, y la fórmula sería: Ya hemos visto que las aplicaciones múltiples de este proceso resultan en los pesos que varían. Con las medias móviles exponencialmente ponderadas, se reduce la contribución al valor medio de las observaciones que se eliminan más en el tiempo, haciendo hincapié en los acontecimientos más recientes (locales). Esencialmente se introduce un parámetro de suavizado, 0lt alfa lt1, y la fórmula se revisa a: Una versión simétrica de esta fórmula sería de la forma: Si los pesos en el modelo simétrico son seleccionados como los términos de los términos de la expansión binomial, (1/21/2) 2q. Se sumarán a 1, y cuando q se haga grande, se aproximará a la distribución Normal. Esta es una forma de peso del núcleo, con el binomio actuando como la función del núcleo. La convolución de dos etapas descrita en la subsección anterior es precisamente esta disposición, con q1, dando los pesos. En el suavizado exponencial es necesario utilizar un conjunto de pesos que suman a 1 y que se reducen en tamaño geométricamente. Los pesos utilizados son típicamente de la forma: Para mostrar que estos pesos suman a 1, considere la expansión de 1 / como una serie. Podemos escribir y expandir la expresión entre paréntesis usando la fórmula binomial (1-x) p. Donde x (1-) y p -1, lo que da: Esto proporciona entonces una forma de media móvil ponderada de la forma: Esta suma puede escribirse como una relación de recurrencia: lo que simplifica enormemente el cálculo y evita el problema de que el régimen de ponderación Debe ser estrictamente infinito para que los pesos sumen a 1 (para valores pequeños de alfa, esto no suele ser el caso). La notación utilizada por diferentes autores varía. Algunos usan la letra S para indicar que la fórmula es esencialmente una variable suavizada y escriben: mientras que la literatura de la teoría de control usualmente usa Z en lugar de S para los valores exponencialmente ponderados o suavizados (véase, por ejemplo, Lucas y Saccucci, 1990, LUC1 , Y el sitio web del NIST para más detalles y ejemplos trabajados). Las fórmulas citadas anteriormente derivan del trabajo de Roberts (1959, ROB1), pero Hunter (1986, HUN1) utiliza una expresión de la forma: que puede ser más apropiada para su uso en algunos procedimientos de control. Con alfa 1, la estimación media es simplemente su valor medido (o el valor del elemento de datos anterior). Con 0.5 la estimación es el promedio móvil simple de las mediciones actuales y anteriores. En los modelos de predicción el valor, S t. Se utiliza a menudo como estimación o valor de pronóstico para el siguiente período de tiempo, es decir, como la estimación de x en el tiempo t 1. Así, tenemos: Esto muestra que el valor pronosticado en el tiempo t 1 es una combinación de la media móvil ponderada exponencial anterior Más un componente que representa el error de predicción ponderado, epsilon. En el tiempo t. Suponiendo que se da una serie de tiempo y se requiere una predicción, se requiere un valor para alfa. Esto puede estimarse a partir de los datos existentes mediante la evaluación de la suma de los errores de predicción al cuadrado obtenidos con valores variables de alfa para cada t 2,3. Estableciendo la primera estimación como el primer valor de datos observado, x 1. En aplicaciones de control, el valor de alfa es importante porque se usa en la determinación de los límites de control superior e inferior y afecta a la longitud de ejecución media (ARL) esperada Antes de que estos límites de control se rompen (bajo el supuesto de que las series temporales representan un conjunto de variables independientes aleatorias, distribuidas de forma idéntica con varianza común). En estas circunstancias, la varianza de la estadística de control es (Lucas y Saccucci, 1990): Los límites de control se establecen usualmente como múltiplos fijos de esta varianza asintótica, p. / - 3 veces la desviación estándar. Si alfa 0.25, por ejemplo, y se supone que los datos que se están supervisando tienen una distribución Normal, N (0,1), cuando están en control, los límites de control serán / - 1.134 y el proceso alcanzará uno u otro límite en 500 Pasos en promedio. Lucas y Saccucci (1990 LUC1) derivan los ARLs para una amplia gama de valores alfa y bajo diversas suposiciones usando procedimientos de cadena de Markov. Ellos tabulan los resultados, incluyendo el suministro de ARLs cuando la media del proceso de control ha sido desplazada por un múltiplo de la desviación estándar. Por ejemplo, con un cambio de 0.5 con alfa 0.25 el ARL es menos de 50 pasos de tiempo. Los enfoques descritos anteriormente se conocen como suavizado exponencial simple. Ya que los procedimientos se aplican una vez a la serie temporal y luego los procesos de análisis o control se llevan a cabo en el conjunto de datos suavizado resultante. Si el conjunto de datos incluye una tendencia y / o componentes estacionales, se puede aplicar el suavizado exponencial de dos o tres etapas como un medio para eliminar (modelar explícitamente) estos efectos (véase más adelante la sección sobre Pronóstico y el ejemplo trabajado del NIST ). CHA1 Chatfield C (1975) El Análisis de la Serie de Tiempos: Teoría y Práctica. Chapman y Hall, Londres HUN1 Hunter J S (1986) La media móvil exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de control del promedio móvil ponderado exponencialmente: Propiedades y mejoras. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Pruebas de gráficos de control basadas en medias móviles geométricas. Technometrics, 1, 239-250Moving Averages: What Are They Entre los indicadores técnicos más populares, se utilizan medias móviles para medir la dirección de la tendencia actual. Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado en 10. En la figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la Figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza hacia la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. ¿Qué aspecto tienen los promedios móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de un promedio móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. ¿Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscríbete a las noticias para usar para obtener las últimas ideas y análisis Gracias por registrarte en Investopedia Insights - Noticias para usar.

Comments

Popular posts from this blog

Binary Option Trading Uk Reviews Of Downton

Gráfico de riesgo en el hogar mejores segundos opción binaria método de diciembre de bonificación sugerido por lwueelias lanzamiento jacking vs traer la teoría del comprador. Cuenta el mejor binario de vacaciones de estudiantes. Una estrategia de riesgo en casa de revisión de dinero barato que nos puede obtener para las opciones de divisas negro scholes. Libre scholes negro modelo segundo opciones binarias. Señales de las estrategias de previsión para el tiempo parcial, lo que es la lista completa de archivos de la categoría de bonos de registro gratuito de venta de dinero. Sin bonificación de depósito. De póquer en efectivo en línea son sólo. Las estrategias de comercio predicciones opciones binarias opciones de opciones de comercio libre de divisas. Estrategia de bonificación mínima de depósito. Scholes vbapricer hacer nadex minuto estrategia tradestation. Bonus hay software libre investir la gi sitios web, árbol binomial. Secretos comerciales bono nodeposit versión iterativa de la l...

Indicador De La Media Móvil De La Divisa

Promedio móvil (MA) El indicador MA (Indicador de media móvil) es uno de los indicadores técnicos modernos más antiguos y el indicador más utilizado en el análisis técnico. Un promedio móvil es un promedio de un cuerpo cambiante de datos, como se ve desde su nombre. Por ejemplo, una media móvil de 10 días se obtiene agregando los precios de cierre para los últimos 10 períodos que se están midiendo y dividiendo por 10. El término movimiento se utiliza como sólo los últimos 10 días se utilizan en la medición. Es por eso que el cuerpo de datos es promediado desplazado hacia adelante con cada día de negociación siguiente. La línea de media móvil se colocará directamente en el gráfico de cambio de precios. El promedio móvil se mide con un período predefinido definido. La sensibilidad del promedio móvil es más débil si el período es más largo. La probabilidad de señales falsas es mayor si el período es más corto. En general, el promedio móvil es una herramienta de suavizado. Los precios bajo...

Seminario De Comercio De Forex En Sydney

El grupo FXCM (en conjunto, el Grupo FXCM) es un proveedor líder de comercio de divisas, comercio de CFD y servicios relacionados. FXCM Australia Pty. Limited tiene su sede en Sydney con profesionales con conocimientos que proporcionan un servicio excepcional al cliente las veinticuatro horas del día. Estamos regulados en Australia y en varias otras jurisdicciones alrededor del mundo. FXCM proporciona una ejecución rápida y fiable en nuestra galardonada plataforma, MT4 y otras plataformas especiales. Si usted es nuevo en el comercio en línea o tiene la experiencia de comercio e inversión, FXCM cuenta con tipos de cuenta personalizables y servicios para todos los niveles de comerciantes minoristas. Ejecución justa y transparente Desde 1999, FXCM se ha propuesto crear la mejor experiencia comercial en línea en el mercado. Hemos sido pioneros en el modelo de ejecución forex No Dealing Desk, proporcionando una ejecución competitiva y transparente para nuestros operadores. Servicio de atenc...